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The recent realizations of a topological valley phase in a photonic crystal, an analog of gapped valleytronic
materials in an electronic system, are limited to the valley Chern number of one. In this paper, we present a
type of valley phase that can have a large valley Chern number of two or three. The valley phase transitions
between the different valley Chern numbers (from one to three) are realized by changing the configuration
of the unit cell. We demonstrate that these topological phases can guide the wave propagation robustly along
a sharply bent domain wall. We believe our results are promising for the exploration of new topological
phenomena in photonic systems. © 2020 Chinese Laser Press
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1. INTRODUCTION

Photonic topological states, rooted in the studies of topological
insulators in electronic systems, have opened up an intriguing
way to control the motion of electromagnetic (EM) waves.
There has been a lot of interest in the topological edge states
resulting from the topological phases that can route the wave
propagation, overcoming the backscattering and remaining ro-
bust against defects [1–5]. Many photonic topological phases
have already been proposed, such as the quantum Hall (QH)
phase [2–11], the quantum spin Hall (QSH) phase [12–18],
and the quantum valley Hall (QVH) phase [19–33].

Symmetry plays a key role in the design of the topological
phases of photonic crystals (PCs). In the honeycomb structured
magnetic PCs, for example, breaking the time-reversal (TR)
symmetry will gap a pair of Dirac cones at high symmetry
K and K 0 points, so that the Berry curvature has the same sign
at these points and yields a nonzero topological invariant num-
ber, the Chern number, jC j � 1. If the Dirac points are away
from the high symmetry points, the Berry curvature will have
more extremes around the K and K 0 points, and the Chern
number will be greater than one [6,7]. Similarly, the QVH
phase is related to the breaking of inversion symmetry, which
introduces a binary degree of freedom (DOF) in the PCs, an
analog of the valley DOF spintronics in the electronic system.
Valley labels the energetically degenerate yet inequivalent
points in momentum space [20]. This new DOF also opens
the Dirac cones at high symmetry K and K 0 points, but the
Berry curvature at these two points has an opposite sign; there-
fore, the Chern number of the bandgap will be zero. However,
the valley Chern number Cv, defined at the valley points, is
nonzero [22,24]. The topological valley phase gets rid of the

limitation of a bias magnetic field, opening a path toward
the topological phase in all-dielectric PC [19–33]. To date,
the QVH phase in PCs is limited to jCvj � 1. A natural ques-
tion is whether or not the QVH phase can have a large valley
Chern number.

In this work, we report what we believe, to the best of our
knowledge, is a new type of valley phase where the valley Chern
number can be jCvj � 1, 2, or 3, depending on the configu-
ration of the unit cell. The variations of the valley Chern num-
ber are achieved by expanding or shrinking one set of rods of
the hexamer. These new QVH phases are characterized by the
Berry curvature in the first Brillouin zone, and further proven
by the edge states at the domain wall according to the bulk-edge
correspondence [34,35]. Note that the number of edge states is
the same as the difference in the valley Chern numbers across
the domain wall. The robust wave transmissions of these QVH
phases are demonstrated by the Z-shaped domain wall. Having
band gaps with larger valley Chern numbers greatly expands the
phases available for topological photonics.

2. TOPOLOGICAL VALLEY STATES WITH LARGE
VALLEY CHERN NUMBERS

A. Dirac Points Away from the High Symmetry Point
Consider that the PC structure is fabricated by the artificial
molecules, as shown in Fig. 1(a). Each molecule, composed
of six neighboring rods, is a hexamer in the background air.
Suppose the rods are made of yttrium iron garnet (YIG), whose
relative permittivity and permeability are εr � 15.26 and
μr � 1, respectively, at microwave frequencies. The molecules
are arranged in the hexagonal lattice, and the lattice constant
is a � 10

ffiffiffi

3
p

mm. The radius of the rods is r � 0.2a.
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The dimension of the molecule is measured by the distance
between the rods’ center and the center of the unit cell, denoted
by R in the figure.

Figure 1(b) plots the band structure at R � a∕3. The cal-
culations were performed by commercial finite element method
solver COMSOL Multiphysics and its Wave Optics Module.
In the calculation, the unit cell was used and the Floquet peri-
odic boundary condition was applied to it. A Dirac point
presents at the frequency of 12.9 GHz in the band structure.
This point is a general point in k-space, not at a high symmetry
point, as other works have reported [19–33]. We note the ar-
rangement of the hexamer in the unit cell is different from that
in Ref. [13], where the hexamer has an additional rotation of
π∕6. This configuration keeps the hexagonal structure even
when the rods expand or shrink, unlike in Ref. [13] where
the structure changes from hexagonal to honeycomb at
R � a∕3 where the Dirac point is present. Due to the sym-
metry of the system, three pairs of Dirac points emerge in
the first Brillouin zone, as displayed in Fig. 1(c). In contrast,
only one pair of Dirac points is in the configuration of Ref. [13]
at the Γ point, as displayed in Fig. 1(d). The increment of the
fold of degeneracy results in a large Chern number of the bands
when they are gapped [6,7].

B. Valley Phase of Large Valley Chern Number
To gap the Dirac points, one can break the time-reversal sym-
metry or the space-inversion symmetry. After the symmetry-
breaking operation, the Dirac points are opened, and each
degeneracy lifting contributes a Berry flux of magnitude π
in each band [2–5], leading to a peak in the Berry curvature.

Each peak contributes a Chern number jC j � 1∕2. When the
total Berry flux adds up to 2π, the Chern number will be
jC j � 1 [8].

Here, we gap the Dirac points by breaking the inversion
symmetry of the system. Shrinking or expanding the distance
R of the set of rods (marked in red) and keeping the other set
(marked in blue) unchanged, the rotation symmetry of the sys-
tem changes from original C6 to C3. Meanwhile, the inversion
symmetry of the system is broken; that is, the unit cell does not
keep its original form under the transform of (x, y) to (−x, − y)
for two-dimensional (2D) systems. This operation opens a full
bandgap at the Dirac point, and the valleys appear at the K �K 0�
point. As displayed in Fig. 2(a), the extreme value presents in
the band above the gap (upper band) and below the gap (lower
band). However, the valleys are different from those previously
reported [19–33].

To show the difference, the Berry curvature and the valley
Chern number were numerically calculated. The Berry curva-
ture of the nth band is defined as Ωn�k� � ∇k × An�k� [4,36],
where An�k� � ihμn,kj∇kjμn,ki is the Berry connection and
μn,k is the Bloch state. The efficient algorithm [37] was used
in the calculation of the Berry curvature over the Brillouin
zone. In the zone, each peak of the curvature contributes to
the Chern number jC j � 1∕2 [8], and the valley Chern num-
ber is obtained by counting the number of peaks. As an illus-
tration, Fig. 2(b) plots the Berry curvature of the lower band in
the first Brillouin zone. We see one peak presents at the valley
and the other three peaks around it. Because the system pre-
serves time-reversal symmetry, the peaks up and down are in
the same numbers, and thus the Chern number of the band

Fig. 1. (a) Schematic of 2D PC structure, composed of hexamers of six ferrite rods and embedded in the air background. The white lines denote
the edge of a unit cell. (b) Band structure of the PC at R � a∕3. A Dirac point is away from the high symmetry points in the first Brillouin zone.
(c) 3D band structure of the PC. Three pairs of Dirac points are between the two bands in the Brillouin zone. (d) 3D band structure of Ref. [13].
One pair of Dirac points presents at the Γ point.
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is zero. However, the band can be characterized by a valley
Chern number because the Berry curvature is distinguished
at K and K 0 valleys. Figure 2(b) shows three peaks up and
one peak down near the K valley, but near the K 0 valley shows
one peak up and three peaks down. Therefore, the valley Chern
number of the band is Cv � Ck − Ck 0 � 1 − �−1� � 2.
Simply rotating the original unit cell by 60° will reverse the
valley Chern number from Cv � 2 to Cv � −2 [38].

A further demonstration of the system having a larger valley
Chern number is to check the number of topological edge states
at the boundary. According to the bulk-edge correspondence
[34,35], the number of edge states between two topologically
distinct domains should be the difference of the valley Chern
number across the boundary. We construct a domain wall
where two domains have opposite valley Chern numbers:
Cv � 2 (Ck � 1 and Ck 0 � −1) and Cv � −2 (Ck � −1
and Ck 0 � �1). The two domains have identical parameters,
as in Fig. 2(a), but one domain takes a rotation of 60° for its
unit cells. Across the domain wall, the differences in the valley
Chern number should be jΔCvj � 2 at K �K 0� point. Indeed,
two edge states emerge inside the bandgap, as shown in
Fig. 3(a). The insets display the edge modes at the dots of the
edge dispersion curves. The electric field is localized near the
domain wall and decays rapidly away from the wall. As a rep-
resentative example, Fig. 3(b) displays the transmission spectra
of the Z-shape bend. The waves along the domain wall are
against the disorders, as shown in the insets of Fig. 3(b).

The figure shows that the valley edge states can guide the waves
around a sharp bend smoothly without reflection in the single-
mode region; however, some reflection occurs in the multi-
mode region because the intervalley scattering is increased.

3. VALLEY PHASES OF DIFFERENT VALLEY
CHERN NUMBERS

The valley phases of the PC depend on the expansion or shrink-
ing of one set of rods. One can identify the different phases by
their eigenstates or their valley Chern numbers. As an example,
we keep the blue set of rods at R1 � a∕3, while expanding the
red set of rods to R2 � a∕2.36, as shown in the inset of
Fig. 4(a). In this situation, the bandgap and energy valley ap-
pear in the band structure, as shown in Fig. 4(a). At the valley,
the phase of the electric field Ez and the power flow are illus-
trated in Fig. 4(b). Similar to the reported valley states, we see
the pseudospin of a large valley Chern number in the figure; the
power flows are circulating counterclockwise outside one set of
rods, but are inside the other set of rods. Generally, the valley
pseudospin around the K 0 point can be distinguished well from
the K point since the vortex chirality is reversed [30]. If the
source that matches the vortex chirality of a specific valley,
it will excite the corresponding valley states and the other valley
state will be suppressed [32]. It provides an intuitive, easy
way to confirm the existence of the pseudospin in our system.
We first performed full-wave simulations to get the field

Fig. 2. (a) Band structures of the PC at R1 � a∕3 and R2 � a∕2.26. (b) Berry curvature in the first Brillouin zone. Curvature is opposite around
the K and K 0 points, and the valley Chern number Cv � Ck − Ck 0 � 1 − �−1� � 2.

Fig. 3. Topological edge state of valley Chern number Cv � 2. (a) Projected band structures for the valley Chern difference jΔCvj � 2 at K �K 0�
point across the domain wall. Insets are the distributions of Ez at the given points A and B in the band structure. (b) Transmission spectra of Z-shape
corners in the frequency range of 12.69–12.85 GHz. The red and yellow regions correspond to the single-mode and multimode regions, respectively.
The insets are the Ez field distributions at the frequencies in the single-mode and multimode regions.
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distribution in the PC by the chiral source composed of four
antennas [14]. The source can provide the positive or the neg-
ative orbital angular momentum (OAM), as shown in Fig. 5(a).
Then, we did a 2D spatial Fourier transformation to get the
field spectrum in the momentum space. The results are dis-
played in Figs. 5(b) and 5(c). We observe that the chiral source
with positive OAM excites the field located near K points in
momentum space, but the source with negative OAM excites
the field near the K 0 points. The field center is slightly off the K
and K 0 points, as shown in the inset of Figs. 5(b) and 5(c),
because the valley points of the large valley Chern number shift

from the high symmetry points. The results confirm that the
valleys have pseudospins, and the pseudospin near the valleys K
and K 0 has a different orientation.

A direct reflection of the valley phase is the Berry curvature,
as shown in Fig. 4(c). We see three peaks are down near the K
point, while three peaks are up near the K 0 point. Thus, the
valley Chern number is Cv � Ck −Ck 0 � −3∕2 − �3∕2� � −3,
a negative number. The number of peaks near the valleys is
different from the conventional valley states. The reason is as-
sociated with the configuration in the unit cell. The phase of Ez
and power flow circulating indicate the red and blue rods can be

Fig. 4. Band structures, phase and power flow distribution, and corresponding Berry curvature of the PC, where R1 is fixed at a∕3,
(a) R2 � a∕2.36 and valley Chern number Cv � −3, (b) R2 � a∕4.2 and Cv � 3, and (c) R2 � a∕4.8 and Cv � 1. Arrow inserted in the phase
distribution indicates the Poynting vector.

Fig. 5. Electric field distribution in momentum space. (a) Chiral sources carry positive and negative OAM. Colors are the phase of electric field
excited by the source in the center. Arrows show the direction of OAM: the counterclockwise arrow represents the positive OAM and the clockwise
arrow represents the negative one. (b) Field excited by the chiral source with positive OAM, where the field is strongly localized at point K . (c) Field
excited by the source with negative OAM, where the field is strongly localized at point K 0. Panel insets are the close look near the point K or K 0.
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considered as two different trimers, the small trimer and the big
trimer. The trimers are in inequivalent positions of the unit
cells, forming A and B sublattices. The difference between
R1 and R2 plays a role in the staggered potential between
two sublattice Δ, which is similar to applying the rods with
a different diameter in the unit cell in Ref. [24] or the rods
of different height in Ref. [21]. The values of R1 and R2 de-
termine the staggered potential Δ. For example, the staggered
potential is zero at R1 � R2, but it is nonzero at R1 ≠ R2. The
staggered potential Δ between the sublattices opens a gap at the
Dirac points, which affects the valley Chern number.

Changing the R value of one subset may transform the valley
state to other phase. Supposing we reduce the dimension of the
red subset to R2 � a∕4.2. Once again, the full bandgap and
valleys present in the band structure [Fig. 4(d)]. The phase dis-
tribution and power flows [Fig. 4(e)] show the red and the blue
trimers can be recognized as two sublattices. However, the big
and small trimers exchange their position in the unit cell, which
results in an opposite staggered potential Δ compared to the
one in Fig. 4(b). It also can be observed in the Berry curvature
[Fig. 4(f )], where the peaks upward and downward are
exchanged between K and K 0 points in Fig. 4(c). Thus, the
valley Chern number at R2 � a∕4.2 is Cv � Ck − Ck 0 �
3∕2 − �−3∕2� � �3, a positive number.

Further shrinking the dimension of the red set will
strengthen the coupling between the six rods, and all the rods
in the unit cell function as a whole, the hexamer. As displayed
in Fig. 4(h), when R2 takes a∕4.8, the phase distribution of the
electric Ez concentrates at the hexamer and the power flow is
counterclockwise around the central point of the unit cell,
which is similar to the valley phase in Ref. [27]. The Berry cur-
vature of the band below the bandgap shows only one peak at
the K �K 0� points, and the valley Chern number is Cv � 1.

The different phases of the large valley Chern number are
related to the band inversion happening in the band structure,
which can be identified by the opening–closing–reopening of
the full bandgap. Figure 6 gives the variation in eigenfrequen-
cies of the valleys when we continuously vary R2 while fixing

R1 � a∕3. With the variation of R2, the valleys experience
several instances of opening and closing, indicating the full
bandgap creating and disappearing. By gradually increasing
R2 to a∕2.36 from a∕3, where there is a Dirac point, a full
bandgap opens at about a∕2.54. The valleys present away from
the high symmetry point in the momentum space and the val-
ley Chern number is −3 [Fig. 4(c)]. Further increasing the R2,
the bandgap closes at about a∕2.32 and then reopens once
again. The process reverses the peaks of Berry curvature, which
happens at a general point in the momentum space. Thus, the
valley Chern number takes the opposite sign �3. After one
more increase of R2, at about a∕2.3, the bandgap closes and
then opens again at K �K 0� points, which leads to a new peak
at K �K 0� point. The new peak is in the opposite direction of
the neighboring three peaks [Fig. 2(b)], resulting in a valley
phase transition from Cv � 3 to Cv � 2. Similarly, when
R2 decreases from a∕3, the full bandgap opens at about
R2 � a∕3.66. Further decreasing R2 to a∕4.8, the peaks of
the Berry curvature near the K �K 0� points [Fig. 4(f )] shrink
to the K �K 0� points; therefore, the valley Chern number is
one when R2 is over a∕4.8.

The valley Chern numbers can further be proven by the
number of the topological edge states at the domain wall.
Again, we make the domain wall between the two PCs with
opposite valley Chern numbers. Figure 7(a) shows the band
structure of the two domains with a valley Chern number
of Cv � 1 (Ck � 1∕2 and Ck 0 � −1∕2) and Cv � −1
(Ck � −1∕2 and Ck 0 � �1∕2). The two domains have iden-
tical geometrical parameters, as in Fig. 4(g), but one domain
shrinks the red set while the other shrinks the blue set. We
observe one edge state appearing in the bandgap, because
the difference in the valley Chern number jΔCvj across the
domain wall is one at K �K 0� point. Figure 7(c) shows that
the wave propagates along a Z-shaped domain wall in the fre-
quency range of 12.7–12.95 GHz. At the edge modes, the wave
is localized at the domain wall and robust against the sharp cor-
ners of the domain wall. Similarly, for the domain wall created
by the PCs of valley Chern number Cv � −3 and �3, where
structure parameters are R1 � a∕3 and R2 � a∕4.2 for one do-
main, and R1 � a∕4.2 and R2 � a∕3 for the other domain,
three edge states present in the projected band structure, as
shown in Fig. 7(b). The number of edge states is consistent
with the differences of the valley Chern number across the do-
main wall; jΔCvj � 3 at K �K 0� point. For these edge states,
Fig. 7(b) plots the field profile of the modes, and the field al-
ways concentrates on the domain wall, which functions as a
waveguide. The robustness of the wave propagation along
the domain wall in the frequency range of 12.78–12.87 GHz
is shown in Fig. 7(d). We see the wave is efficient going across
the sharp corners of the Z-shaped domain wall. We should note
that because of the multiple edge modes at a given frequency,
the robustness of the wave propagation may be weaker in some
cases of disorders. Even so, the multiple edge modes of the
waveguide may be applied to increase the coupling efficiency
of photonic devices [39], such as demultiplexers [40] and 3 dB
power splitters [41]. The reconfiguration of edge modes num-
ber provides an easy way to realize tunable devices, such as a
dispersion tuning waveguide, where single or multiple modes

Fig. 6. Variation of the valley frequency with varying R2 when R1 is
fixed. The valley Chern number Cv remains unchanged in the region
of the same color.
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can be switched by simply rotating the original unit cell
by 60°. The topological valley phases get rid of the magneto–
optical effects, which are typically weak at optical frequencies,
and then they can be extended to even higher frequencies.
Therefore, the topological phases of a large valley Chern num-
ber may have potential applications in topological photonic in-
tegrated circuits and devices [29,33] because of their ease of
implementation.

4. CONCLUSION

In conclusion, we have proposed and theoretically demon-
strated what we believe, to the best of our knowledge, is a
new type of valley Hall phase in 2D photonic crystal, which
is made of the hexamers of dielectric rods and has a large valley
Chern number. By simply shrinking or expanding one set of
rods in the hexamer, we realize a valley phase transition from
the valley Chern number of one to three. The multiple edge
states further demonstrate our valley phases with large valley
Chern numbers, which are perfectly compatible with the
bulk-edge correspondence. Robustness of the edge modes is
demonstrated by the wave transmission along the domain wall
of the Z-shaped form. We believe our study provides new
opportunities in topological photonics, according to practical
requirements.
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